
Basic model for measles vaccination

The total population at time t, denoted by N(t), is sub-divided into the disjoint com-

partments of susceptible (S(t)), successfully- vaccinated (i.e., those who received the

two MMR doses) (V (t)), newly-infected (i.e., latent/exposed) (E(t)), infectious (I(t))

and recovered (R(t)), so that

N(t) = S(t) + V (t) + E(t) + I(t) +R(t).

The model is given by the following equations:

dS

dt
= (1− p)Π + ωRR + ωV V − β

SI

N
− µS,

dV

dt
= pΠ− ωV V − µV,

dE

dt
= β

SI

N
− (σ + µ)E,

dI

dt
= σE − (γ + µ+ δ)I,

dR

dt
= γI − (ωR + µ)R.

(1)

The state variables and parameters of the model, as well as the baseline values of

the parameters, are given in the tables below. The main assumptions made in the

formulation of the model are:

1. Homogeneous-mixing (i.e., well-mixed population): every member of the commu-

nity (i.e., the 1 to 6-year old cohort group that are targeted for vaccination) is

equally likely to meet with (and acquire infection from) every other member of

the community. In other words, the simple model does not account for hetero-

geneities such as age-related contact patterns, spatial and temporal heterogeneity

etc.

2. Exponentially distributed waiting time in each epidemiological compartment.

3. Vaccinated individuals (i.e., those who received the two MMR doses) are fully

protected against the acquisition of measles infection. Data shows that the two
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doses of the MMR vaccine provides 97% protected efficacy in vaccinees.... so, it

is reasonable to assume perfect protection (keeps the model simple(r)).

The vaccination reproduction number (denoted by RV ) of the model is given by

RV = (β)

[
ωV + µ(1− p)

ωV + µ

](
σ

σ + µ

)(
1

γ + µ+ δ

)
.

The basic reproduction number (i.e., the reproduction number in the absence of vacci-

nation), denoted by R0 (obtained by setting ωV = p = 0 in RV ), is given by

R0 = β

(
σ

σ + µ

)(
1

γ + µ+ δ

)
.

The threshold quantity R0 is the average number of new cases generated by a typ-

ical (not atypical...such as a super-spreader) infected individuals if introduced in a

completely susceptible population (i.e., no one is immunized or has immunity due to

recovery from prior infection). On the other hand, the vaccination reproduction num-

ber (RV ) is the average number of new cases generated by a typical infected individual

introduced into a population where a fraction of the population is vaccinated.

The vaccination reproduction number can be re-written in terms of R0 as below:

RV = (1−m)R0,

where m =
pµ

ωV + µ
is the overall fraction of individuals vaccinated at steady-state.

Herd immunity is achieved if m > 1− 1
R0

.
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Table 1: Description of state variables and parameters of the model

State variable Description

S(t) Population of susceptible individuals

V (t) Population of successfully vaccinated individuals

E(t) Population of newly-infected (latent/exposed) individuals

I(t) Population of infectious (symptomatic) individuals

R(t) Population of recovered individuals

Parameter Description

Π Birth rate

p Proportion of individuals (1 to 6-year olds) vaccinated

β Effective contact rate

µ Natural death rate (i.e., 1/µ is the average lifespan in the community)

ωV Vaccine waning rate

σ Progression rate from E to the symptomatic class I (i.e., 1/σ is the incubation period)

γ Recovery rate

δ Disease-induced mortality rate

ωR Rate of loss of natural (infection-acquired) immunity

Key Points on Parameter Estimation

(a) The demographic parameters (Π and µ, for birth and natural death rate, respec-

tively) are estimated based on census data. In particular, the estimated for µ is

obtained from the fact that 1/µ equals the average life span in the community.

For the US, 1/µ is approximately 78 years. Thus, µ ≈ 1/(78 ∗ 365) per day.

Further, in the absence of disease, the total population is given by its equilibrium

value Π/µ. For instance, if the total population of the cohort group is 1 million,

then Π/µ = 1 million. Since we already know what the value of µ is, we can then

use this equation to obtain an estimate for Π.... giving Π = µ times 1 million. So,

this is how the values of Π and µ should be estimated for each of the jurisdiction

or country you are considering in the simulations.

(b) The effective contact rate (β) is estimated based on the value of the basic repro-

duction number (R0). Taking the average value of R0 for measles to be 17, we

can estimate β as β = (γ + µ+ δ) ∗ R0.

(c) The mortality rate for measles is generally low (between 100,000 to 150,000 deaths

globally per year). Hence, it is probably plausible to set δ to zero.
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Table 2: Estimated values for the parameters of the model

Parameter Baseline value (per day) Source

Π µ times the total cohort population Estimated from census data

p 0.60 Heffernan and Keeling, 2012

µ 1/(78 ∗ 365) Estimated from census data

β 17 ∗ (γ + µ+ δ) Estimated

ωV 1/(10 ∗ 365) Estimated (based on 10 years of protection)

σ 1/10 Estimated (incubation period is from 7 to 12 days)

γ 1/7 Heffernan and Keeling, 2012

δ 0 Estimated

ωR 1/(10 ∗ 365) Estimated

Some Random Thoughts

1. Probably a good idea to set the vaccine proportion (p) as an input parameter.

Let the players choose the vaccine coverage for their location (city, state, country

etc.) But ensure that this is incorporated as a fraction in the app (0 < p ≤ 1).

2. Note that β will be different for different regions or nations (since it is defined in

terms of γ, µ and δ, which may vary between places). So, you probably do not

need to incorporate the density-related heterogeneity we talked about yesterday.

3. Players to input the total size of the vaccinated cohort (i.e., the total population

of 1 to 6-year olds) and average lifespan in their community. This will then be

used to estimate Π and µ for their location.

4. Note that I set the vaccine waning rate (ωV ) and the waning rate of natural

immunity (ωR) to be the same.... I couldn’t find an estimate for the latter (it

may be good to check; but I think ωV = ωR is reasonable).
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