Model for Polio Transmission Dynamics

December 5, 2020

1 Model Formulation

The models to be developed are based on splitting the total population of children in the community at time t, denoted by N(t), into the mutually-exclusive compartments of unvaccinated susceptible children (S(t)), vaccinated susceptible children (V(t)), exposed (newly-infected) children (E(t)), symptomatically-infectious children (I(t)), children children due to the virus (P(t)) and recovered children (R(t)), so that

$$N(t) = S(t) + V(t) + E(t) + I(t) + P(t) + R(t).$$

1.1 Model for Polio Virus Transmission Dynamics

$$\frac{dS}{dt} = \Pi(1-\phi) + \omega_v V - \beta S \frac{I}{N} - \mu S,$$

$$\frac{dV}{dt} = \Pi\phi - (\omega_v + \mu)V,$$

$$\frac{dE}{dt} = \beta S \frac{I}{N} - (\sigma + \mu)E,$$

$$\frac{dI}{dt} = \sigma E - (\kappa + \gamma + \mu)I,$$

$$\frac{dP}{dt} = \kappa I - \mu P,$$

$$\frac{dR}{dt} = \gamma I - \mu R.$$
(1.1)

Main assumptions and simplifications

- 1. We only consider cohort vaccination: that is, we consider the proportion of infants and young children (under 5) who received all four doses. We do not include continuous (booster) vaccination for (much) older children
- 2. Vaccine offers perfect protection against acquisition of infection... but the protection can wane (at a rate ω_v)
- 3. Homogeneous mixing (every child is equally likely to mix with every other child in the community)
- 4. Polio-induced mortality is negligible (hence, neglected in the modeling)
- 5. Recovery induces permanent immunity against reinfection.

The vaccination reproduction number (denoted by \mathbb{R}_V) of the polio vaccination model is given by

$$\mathbb{R}_{V} = \beta \left[\frac{\omega_{v} + \mu(1 - \phi)}{\omega_{v} + \mu} \right] \left(\frac{\sigma}{\sigma + \mu} \right) \left(\frac{1}{\kappa + \gamma + \mu} \right). \tag{1.2}$$

Table 1: Description of state variables of the Polio model.

State variable	Description
S	Population of unvaccinated susceptible children
V	Population of vaccinated susceptible children
E	Population of exposed (recently-infected) children
I	Population of symptomatically-infectious children
P	Population of polio-paralysed children
R	Population of recovered children

Table 2: Description of the parameters of the model (1.1).

Parameter	Description
β	Effective contact rate
П	Recruitment rate into the community (by birth or immigration)
ϕ	Fraction of infants/children vaccinated (cohort vaccination)
ω_v	Vaccine waning rate
σ	Progression rate from exposed to infectious class I
κ	Rate of polio-induced paralysis in children
γ	Recovery rate
μ	Natural mortality rate

Table 3: Parameter values of the model (1.1).

Parameter	Values
β	$??? day^{-1}$
П	$441 \mathrm{day^{-1}}$
ϕ	0.56 (dimensionless)
ω_v	0???
ψ	$1/7 \mathrm{day^{-1}}$
σ	$1/7 \mathrm{day^{-1}}$
κ	$1/200 \mathrm{day^{-1}}$
γ	$1/16 \mathrm{day^{-1}}$
μ	$0.00001119 \mathrm{day^{-1}}$

In the absence of vaccination (i.e., if $\phi = \xi_v = \omega_v = V = 0$), the vaccination reproduction number (\mathcal{R}_V) reduces to the basic reproduction number (denoted by \mathbb{R}_0) given by

$$\mathbb{R}_0 = \beta \left(\frac{\sigma}{\sigma + \mu} \right) \left(\frac{1}{\kappa + \gamma + \mu} \right). \tag{1.3}$$

Define $f_v = \frac{\mu \phi}{\omega_v + \mu}$, the fraction of infants/children vaccinated at (disease-free) steady-state. The vaccination reproduction number can then be re-written (in terms of \mathbb{R}_0 and f_v) as:

$$\mathbb{R}_V = \mathbb{R}_0 \left(1 - f_v \right). \tag{1.4}$$

The threshold quantity \mathbb{R}_0 is the average number of new cases generated by a typical (not atypical...such as a super-spreader) infected individuals if introduced in a completely susceptible population (i.e., no one is immunized or has immunity due to recovery from prior infection). On the other hand, the vaccination reproduction number (\mathbb{R}_V) is the average number of new cases generated by a typical infected individual introduced into a population where a certain proportion of the population is vaccinated.

Vaccine-induced herd immunity is achieved if

$$f_v > \left(1 - \frac{1}{\mathbb{R}_0}\right). \tag{1.5}$$

Key Points on Parameter Estimation

- (i) The demographic parameters (Π and μ , for birth and natural death rate, respectively) are estimated based on census data. In particular, the estimated for μ is obtained from the fact that $1/\mu$ equals the average life span in the community. For the US, $1/\mu$ is approximately 78 years. Thus, $\mu \approx 1/(78*365)$ per day. Further, in the absence of disease, the total population is given by its equilibrium value Π/μ . For instance, if the total population of the cohort group is 1 million, then $\Pi/\mu = 1$ million. Since we already know what the value of μ is, we can then use this equation to obtain an estimate for Π ... giving $\Pi = \mu$ times 1 million. So, this is how the values of Π and μ should be estimated for each of the jurisdiction or country you are considering in the simulations.
- (ii) The effective contact rate (β) is estimated based on the value of the basic reproduction number (\mathbb{R}_0) . The basic reproduction number of polio is typically estimated to lie in the range 5 to 7. So, it is plausible to take the average value of \mathbb{R}_0 for polio to be 6. Hence, you can estimate β as $\beta = (\gamma + \mu + \delta) * \mathbb{R}_0$ (with $\mathbb{R}_0 = 6$).