Blurring the Line Between Plants and Animals

Written by: James Long

show/hide words to know

Chlorophyll: the pigment that gives plants their green color and allows them to absorb sunlight... more

Cyanobacteria: a kind of bacteria that gets its energy through photosynthesis... more

Macrophage: an immune cell that engulfs foreign material and dead cells... more

Organelle: "little organ". An internal organ of a cell... more

Photosynthesis: a set of chain reactions that convert light energy into chemical energy. Photosynthesis also produces energy-rich carbohydrates like starch. Photosynthesis occurs in the chloroplast of a plant cell... more

What's in the Story?

It's a cloudy morning and you are halfway through the race, your feet already hurting from running on the pavement and your energy is fading fast. Suddenly, the clouds clear and the sun breaks through and shines down on your skin. You feel a rush of new energy that powers you through to finish the race.

plant cells with chloroplasts

Here we can see round, green chloroplasts inside of plant cells. Inside the chloroplasts, chlorophyll absorbs light to be used in photosynthesis for energy. The chlorophyll also makes the chloroplasts appear green.

Sunlight can make you feel good, especially on a cold day, but it can't give you energy...right? Animals eat food to gather energy and plants use sunlight to make energy, but wouldn't it be better if organisms could use both energy sources? If you were running out of food you could just sit in the sun to gather energy, saving your food for a rainy day. In the PLOS ONE article “Towards a Synthetic Chloroplast,” scientists tried to create an organism that used both food and sunlight to make energy.

Assembly Required

The problem is tricky; how would you go about making an organism that gets energy from both food and sunlight? We may not have instructions to this puzzle, but there are clues.

When you are exhausted, you can eat and drink for energy. But plants don’t seem to eat anything. Instead, they receive energy through water and sunlight. This is because plants and animals obtain energy using different organelles.


Scientists used the zebrafish to see if they could get bacteria with chloroplasts to live inside animal cells.

Animal cells use mitochondria to convert energy into food, and plant cells use chloroplasts to convert light into energy through photosynthesis. Putting these two organelles in the same cell would be like having two restaurants on the same street corner--they might not get along. So how did scientists figure out a way to combine both organelles in one cell? By learning a little bit about how chloroplasts and mitochondria came to exist in the first place.

Where Did They Come From?

Have you ever been eating a bowl of ice cream when your mom tells you “you are what you eat”? Well, you are definitely not made of ice cream, but "you are what you eat" may have been true for some cells a long time ago.

The idea is that there were large cells roaming around back then, eating smaller cells for food. Some of these small cells could not be properly broken down and digested by the large cells. This made it so the small cells could settle down to live within these large cells. This idea is called endosymbiosis, where endo- means within or inside, and -symbiosis means living together. So endosymbiosis means that two cells are living together, with one inside the other.

chloroplast model

This is a model chloroplast. Chloroplasts may have come to live inside of plant and bacteria cells because they were swallowed by larger cells millions of years ago.

In this situation, both cells benefitted from the presence of the other. The large cells acted as houses for the small cells, and the small cells provided energy to the large cells. These small cells are believed to be the ancestors to what we now know as chloroplasts and mitochondria. We believe this because chloroplasts and mitochondria hold their own DNA that is unique from that of the large cells.

Endosymbiosis is thought to be a rare event in nature though, because most cells have defenses against invading cells. But using this idea helped the scientists come up with innovative ways they might be able to get a cell that has mitochondria to accept cyanobacteria, a special type of bacteria that has chloroplasts.

Invasion of the Green Aliens!

The body is like a well-protected castle, where foreign invaders are not allowed entry and are killed if they make it inside. So how could you get living bacteria into the body and help it survive? The scientists came up with three different methods of entry for the cyanobacteria.

First, the scientists directly injected the cyanobacteria into the middle of the animal cell because it allowed the bacteria to avoid the exterior defenses of the animal cell. For the other two methods, the scientists needed to upgrade the bacterial cells to survive the defense of the animal cells. They did this by strengthening the defenses of the cyanobacteria cells against the animal cell defenses.

methods of inserting cyanobacteria

These are drawings of the three methods scientists used to get bacteria that contain chloroplasts (called cyanobacteria) into animal cells. Click on the picture for the full story.

This is like creating two perfect soldiers that can never outfight one another. The strengthened bacteria were then either allowed to invade the fish cells by themselves, or to be swallowed by specific fish cells that eat bacteria. The scientists hoped the cyanobacteria would survive and grow within the fish cells.


Though you may be picturing fish with plant-like skin, the scientists were not able to make the plant-animal hybrid. The scientists were hoping to see the cyanobacteria survive and reproduce within the animal cells. If the cyanobacteria were able to reproduce and increase in number, then maybe they could produce energy for the host cell and be considered similar to chloroplasts. But, this is not what the scientists found.

The cyanobacteria that had been swallowed by the special bacteria-eating cells had died after a few days. The introduced bacteria were not able to reproduce much within the cell either. Injecting the cyanobacteria was also unsuccessful in the long run, but the results of the experiment were promising.

The cyanobacteria injected in the zebrafish cells were able to grow and reproduce for twelve days, but eventually the molecules that color the fish’s skin blocked the cyanobacteria from gathering sunlight. Luckily, this short-term progress is enough to give the scientists hope.  Maybe with a lot more research, we can one day reach the dream of powering up with chloroplasts in our skin.

 Additional images from Wikimedia Commons.

Danio rerio (zebrafish) by Monte Westerfield via the National Institute of General Medical Science.

View Citation

You may need to edit author's name to meet the style formats, which are in most cases "Last name, First name."

Bibliographic details:

  • Article: Blurring the Line Between Plants and Animals
  • Author(s): James Long
  • Publisher: Arizona State University School of Life Sciences Ask A Biologist
  • Site name: ASU - Ask A Biologist
  • Date published: February 11, 2013
  • Date accessed: May 23, 2018
  • Link:

APA Style

James Long. (2013, February 11). Blurring the Line Between Plants and Animals. ASU - Ask A Biologist. Retrieved May 23, 2018 from

American Psychological Association. For more info, see

Chicago Manual of Style

James Long. "Blurring the Line Between Plants and Animals". ASU - Ask A Biologist. 11 February, 2013.

MLA 2017 Style

James Long. "Blurring the Line Between Plants and Animals". ASU - Ask A Biologist. 11 Feb 2013. ASU - Ask A Biologist, Web. 23 May 2018.

Modern Language Association, 7th Ed. For more info, see
Plant animal

Though we don't have any plant-imals yet, scientists are trying to get cells that make energy from sunlight to grow inside of animal cells.

Be Part of
Ask A Biologist

By volunteering, or simply sending us feedback on the site. Scientists, teachers, writers, illustrators, and translators are all important to the program. If you are interested in helping with the website we have a Volunteers page to get the process started.

Donate icon  Contribute

Share this page:


Share to Google Classroom